Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins

Yingchun Wang

State Key laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, CAS

Membrane Proteins

Model: Synechocystis

- Widely used model for photosynthesis and respiration. Many proteins are related with photosynthesis or respiration.
- 3.96 Mb, 3672 protein coding genes.
- Easy to uptake foreign genes and integrate into its own genome through homologous recombination, easy to make mutations.
- Can grow photoautotrophically or heterotrophically using glucose as the sole carbon source.
- Generation of renewable energy and waster water treatment.
- Contains a large fraction of thylakoid membrane.

Arch Microbiol (2006) 184: 259–270

Overview of Synechocystis Membrane Proteomics

- N-terminal sequencing (Electrophoresis, 1997; 1999).
- MALDI-TOF (integral and thylakoid fraction)
- > (Electrophoresis, 2000; Proteomic science, 2009).
- MALDI-TOF (Outer, plasma, and thylakoid membrane)
- (Mol. Cell. Proteomics, 2002; 2004).

- Proteomics, 2005; 2007;
- J Proteome Res, 2006; 2007;
- J Chromatography A, 2010;

2-DE

LC-MS

© 2014 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org

Functional Proteomic Discovery of SIr0110 as a Central Regulator of Carbohydrate Metabolism in *Synechocystis* Species PCC6803*^S

Liyan Gao‡, Chunting Shen‡, Libing Liao§, Xiahe Huang‡, Kehui Liu‡, Wei Wang‡, Lihai Guo¶, Wenhai Jin¶, Fang Huang§, Wu Xu^{**}, and Yingchun Wang‡**

Identification of membrane and soluble proteins

MCP, 2014, 13:204-19

Questions

- How to decide a non-TM containing protein identified from isolated membranes is a peripheral membrane protein or just some carry-over contamination from soluble the fraction.
- Are membranes the primary functional places for such a non-TM containing protein.

Rational and Experimental Design

Identification of Synechocystis Proteome

Proteins Encoded by Chromosome- or Plasmid-Borne Genes

Summary

- 2347 proteins were identified with 2-peptide match (64% of the proteome).
- Coverages of identification for TM-containing proteins and the total proteins are both the highest.
- Separation of membranes from the soluble fractions in highly efficient.
- Proteins encoded by chromosome-borne genes are move likely to be identified than those encoded by plasmid-borne gene.

Tightness of Membrane Association

Proteins with 1 predicted TM

Tightness of Membrane Association: PSI Subunits

Eric Boudreau, et al, The EMBO Journal, 1997

Tightness of Membrane Association: PSII Subunits

ATP synthases

Phycobilisomal Proteins

A working model for the PBS-dependent state transition.

Kondo, Photosynth Res, 2009

Ribosomal Proteins

Signaling Proteins

ABC Transporters

Lipoproteins

Validation of The Tightness Measurement

Enriched Functions of PMPs With Strong or Weak Membrane Association

Enriched Functions of PMPs With Strong or Weak Membrane Association

Tightly membrane-associated proteins

Less tightly membrane-associated proteins

Proteins Sharing the Same Domain Associate the Membranes with Similar Tightness

Conclusions

- This tightness of membrane association for PMPs can be measured using a semiquantitative proteomics approach.
- Different tightness of membrane association may be required for performing different functions.
- Proteins sharing the same domain tend to associate the membranes with similar tightness.
- > The method can be extended to all prokaryotic and eukaryotic organisms
- This work provides a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli.

Acknowledgements

Wang Lab at IGDB Haitao Ge Dr. Kehui Liu Xiahe Huang Chunting Shen Yajun Xie Yuanya Zhang Chen Bu Xiaofei Liu Yujian Wu Jinglong Wang Yu Kang Longfa Fang

Institute of Botany, CAS

Dr. Fang Huang

Institute of Hydrobiology, CAS

Dr. Jindong Zhao Dr. Xudong Xu

University of Louisiana, Lafayette

Dr. Wu Xu